|
0、代码使用
代码提供了计算多元函数范围内极值的接口,可以参数的数量、参数范围、编码分辨率、极大值极小值的选择等。解决大部分多元函数优化问题可以直接拿来使用。
GeneticAlgorithm(vector<vector<float>> Domain, int resolution, bool ifMax)
Domain 二维数组 为参数的范围
resolution 为编码分辨率,值越大,结果越精确
ifMax true:求极大值 false:求极小值
1
2
3
4
1、遗传算法原理
2、编码方式
对于实数的编码,如采用IEEE浮点数编码太过复杂,且不利于范围的限制。
这里采用映射的方法,将一定位数的二进制码转换为无符号整数后,通过变换,映射到参数的具体范围内。
假设使用16位编码方式:
比例系数 K = (max - min)/65535
适应度值 fitness = K * 65535 + min
对于多元函数,在以上的前提下,只需要将多个二进制编码拼接成一维数组即可。
void source2code(){ //将随机数转化为编码
for (size_t i = 0; i < group.size(); i++)
{
group[i].code.clear();
for(size_t k = 0; k < indenpendentNum; k++){
for (size_t j = 0; j < resolution; j++)
group[i].code.push_back((group[i].sourceVec[k] >> j) & 1);
}
}
}
void code2val(){//将编码解码为自变量
for (size_t i = 0; i < group.size(); i++)
{
group[i].indenpendentValVec.clear();
for (size_t j = 0; j < indenpendentNum; j++)
{
double tmp = 0;
for (size_t k = 0; k < resolution; k++)
tmp += group[i].code[k + j*resolution] * pow(2, resolution - k - 1);
group[i].indenpendentValVec.push_back(tmp * translationVec[j] + Domain[j][0]);
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
3、选择方式:
轮盘法
void calculatePropers() { //计算累积概率
group[0].culmulateProbability = group[0].fitness;
for (size_t i = 1; i < param.populationSize; i++)
group[i].culmulateProbability = group[i - 1].culmulateProbability + group[i].fitness;
for (size_t i = 0; i < param.populationSize; i++)
group[i].culmulateProbability /= group[param.populationSize - 1].culmulateProbability;
}
void selectCrossGroup() { //选择交叉种群
for (size_t i = 0; i < param.crossoverRate*param.populationSize; i++) {
double r = (double)rand() / RAND_MAX;
if (r < group[0].culmulateProbability) {
crossGroup.emplace_back(group[0]);
continue;
}
for (size_t j = 1; j < param.populationSize; j++) {
if (r >= group[j - 1].culmulateProbability && r < group[j].culmulateProbability) {
crossGroup.emplace_back(group[j]);
break;
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
4、交叉方式:
简单交换法,与生物交叉互换类似
void crossover() { //交叉 核心代码
int gsize = crossGroup.size();
for (size_t i = 0; i < gsize; i += 2) {
int size = indenpendentNum*resolution * param.crossPercent;
int r = rand() % (indenpendentNum*resolution-size);
for (size_t j = r; j < r+size; j++){
int tmp = crossGroup[i].code[j];
crossGroup[i].code[j] = crossGroup[i + 1].code[j];
crossGroup[i + 1].code[j] = tmp;
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
5、变异方式:
随机对某一位编码取反
void mutation() { //变异
for (size_t i = 1; i < group.size(); i++) {
if (rand() % 100 < param.mutationRate * 100) {
int r = rand() % resolution*indenpendentNum;
group[i].code[r] = !group[i].code[r];
}
}
}
1
2
3
4
5
6
7
8
6、选择群体方式
择优选取
void selectGroup() { //选择种群
int csize = crossGroup.size();
for (size_t i = 0; i < csize; i++)
{
code2val(crossGroup[i]);
calculateFitness(crossGroup[i]);
group.emplace_back(crossGroup[i]);
}
sort(group.begin(), group.end(), compare);
group.erase(group.begin() + param.populationSize, group.end());
crossGroup.clear();
}
//比较函数 用于排序
static bool compare(individual a, individual b) {
return a.fitness > b.fitness;
}
7、整体代码
#include <vector>
#include <iostream>
#include <string>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <cstdlib>
using namespace std;
class GeneticAlgorithm {
public:
struct parameters {
int populationSize = 200; //种群大小
int maxGeneration = 200; //最大迭代次数
double mutationRate = 0.05; //变异概率
double crossoverRate = 0.4; //交叉概率
int tournamentSize = 50; //选择种群大小
float crossPercent = 0.2; //交叉百分比
} param;
struct individual {
double fitness; //适应度
double culmulateProbability; //累积概率
vector<unsigned int> sourceVec; //源数据
vector<char> code; //编码值
vector<double> indenpendentValVec; //自变量数组
};
vector<individual> group; //种群
vector<individual> crossGroup; //交叉种群
int resolution; //分辨率:编码的位数
vector<double> translationVec; //转化系数数组
unsigned int sourceMax; //原码最大值
bool ifMax;
int indenpendentNum; //自变量个数
vector<vector<float>> Domain; //自变量范围
GeneticAlgorithm(vector<vector<float>> Domain, int resolution, bool ifMax) {
this->resolution = resolution; //初始化参数
this->sourceMax = (pow(2, resolution) - 1);
this->ifMax = ifMax;
this->indenpendentNum = Domain.size();
this->Domain = Domain;
for (size_t i = 0; i < this->indenpendentNum; i++)
this->translationVec.push_back((Domain[i][1] - Domain[i][0])/sourceMax);
init(); //初始化种群 产生编码范围内随机数 生成二进制编码
for (size_t i = 0; i < param.maxGeneration + 1; i++)
{
updateGroupFitness(); //更新种群适应度
calculatePropers(); //计算累积概率 用于轮盘赌
selectCrossGroup(); //选择交叉种群 轮盘赌
crossover(); //交叉
mutation(); //变异
selectGroup(); //选择下一代种群
if (i % 20 == 0)
cout << "第" << i << "代的适应度:" << getResult() << endl;
}
// showGroup();
// showGroup();
}
void init() { //初始化种群 随机初始路径
srand(time(NULL));
individual tmp;
for (size_t i = 0; i < param.populationSize; i++)
{
tmp.sourceVec.clear();
for (size_t j = 0; j < indenpendentNum; j++){
tmp.sourceVec.emplace_back(rand() % sourceMax);
}
group.emplace_back(tmp);
}
source2code(); //将随机数转化为编码
code2val(); //将编码解码为自变量
}
void source2code(){ //将随机数转化为编码
for (size_t i = 0; i < group.size(); i++)
{
group[i].code.clear();
for(size_t k = 0; k < indenpendentNum; k++){
for (size_t j = 0; j < resolution; j++)
group[i].code.push_back((group[i].sourceVec[k] >> j) & 1);
}
}
}
void code2val(){//将编码解码为自变量
for (size_t i = 0; i < group.size(); i++)
{
group[i].indenpendentValVec.clear();
for (size_t j = 0; j < indenpendentNum; j++)
{
double tmp = 0;
for (size_t k = 0; k < resolution; k++)
tmp += group[i].code[k + j*resolution] * pow(2, resolution - k - 1);
group[i].indenpendentValVec.push_back(tmp * translationVec[j] + Domain[j][0]);
}
}
}
void code2val(individual &ind){//将编码解码为自变量
ind.indenpendentValVec.clear();
for (size_t i = 0; i < indenpendentNum; i++){
double tmp = 0;
for (size_t k = 0; k < resolution; k++)
tmp += ind.code[k+ i*resolution] * pow(2, resolution - k - 1);
ind.indenpendentValVec.push_back(tmp * translationVec[i] + Domain[i][0]);
}
}
void showGroup() { //打印种群 用于测试
int size = group.size();
for (size_t i = 0; i < 10; i++)
{
cout << "第" << i << "个个体的编码:";
int size = resolution * indenpendentNum;
for (size_t j = 0; j < size; j++)
cout << (int)group[i].code[j];
cout << endl;
cout << "第" << i << "个个体的自变量:";
for (size_t j = 0; j < indenpendentNum; j++)
cout << group[i].indenpendentValVec[j] << " ";
cout << endl;
cout << "第" << i << "个个体的适应度:" << group[i].fitness << endl;
cout << "第" << i << "个个体的累积概率:" << group[i].culmulateProbability << endl;
cout<<"------------------------------------------------------"<<endl;
}
}
void updateGroupFitness() { //更新整个种群的适应度
for (size_t i = 0; i < param.populationSize; i++)
calculateFitness(group[i]);
}
void calculateFitness(individual &ind) { //计算适应度
double x = ind.indenpendentValVec[0];
double y = ind.indenpendentValVec[1];
ind.fitness = 6.452*(x+0.125*y)*pow(cos(x) - cos(2*y),2)/
pow(0.8+pow((x-4.2),2)+2*pow((y-7),2),0.5) + 3.226*y;
if (!ifMax)
ind.fitness = 1 / ind.fitness;
}
void calculatePropers() { //计算累积概率
group[0].culmulateProbability = group[0].fitness;
for (size_t i = 1; i < param.populationSize; i++)
group[i].culmulateProbability = group[i - 1].culmulateProbability + group[i].fitness;
for (size_t i = 0; i < param.populationSize; i++)
group[i].culmulateProbability /= group[param.populationSize - 1].culmulateProbability;
}
void selectCrossGroup() { //选择交叉种群
for (size_t i = 0; i < param.crossoverRate*param.populationSize; i++) {
double r = (double)rand() / RAND_MAX;
if (r < group[0].culmulateProbability) {
crossGroup.emplace_back(group[0]);
continue;
}
for (size_t j = 1; j < param.populationSize; j++) {
if (r >= group[j - 1].culmulateProbability && r < group[j].culmulateProbability) {
crossGroup.emplace_back(group[j]);
break;
}
}
}
}
void crossover() { //交叉 核心代码
int gsize = crossGroup.size();
for (size_t i = 0; i < gsize; i += 2) {
int size = indenpendentNum*resolution * param.crossPercent;
int r = rand() % (indenpendentNum*resolution-size);
for (size_t j = r; j < r+size; j++){
int tmp = crossGroup[i].code[j];
crossGroup[i].code[j] = crossGroup[i + 1].code[j];
crossGroup[i + 1].code[j] = tmp;
}
}
}
void mutation() { //变异
for (size_t i = 1; i < group.size(); i++) {
if (rand() % 100 < param.mutationRate * 100) {
int r = rand() % resolution*indenpendentNum;
group[i].code[r] = !group[i].code[r];
}
}
}
void selectGroup() { //选择种群
int csize = crossGroup.size();
for (size_t i = 0; i < csize; i++)
{
code2val(crossGroup[i]);
calculateFitness(crossGroup[i]);
group.emplace_back(crossGroup[i]);
}
sort(group.begin(), group.end(), compare);
group.erase(group.begin() + param.populationSize, group.end());
crossGroup.clear();
}
//比较函数 用于排序
static bool compare(individual a, individual b) {
return a.fitness > b.fitness;
}
double getResult() { //获取结果
if(ifMax)
return group[0].fitness;
else
return 1 / group[0].fitness;
}
};
int main() {
//参数范围
vector<vector<float>> Domain = { {0,10},{0,10} };
int resolution = 16; //编码长度
bool ifMax = true; //是否是最大值
GeneticAlgorithm ga(Domain, resolution, ifMax);
}
8、代码效果
测试函数收敛迅速,因未找到合适的测试函数,未进行进一步测试。
第0代的适应度:92.1223
第20代的适应度:99.9199
第40代的适应度:99.995
|
|