|
遗传算法是一种优化搜索算法,用于在给定的搜索空间中找到最优解。一维下料问题是指从一个长度为L的木棒中切割出n个长度为a的小木棒,使得切割后的小木棒总长度最大。以下是一个简单的遗传算法实现:
- #include <iostream>
- #include <vector>
- #include <algorithm>
- #include <ctime>
- #include <cstdlib>
- using namespace std;
- const int POP采用SIZE = 100; // 种群大小
- const int MAX采用GEN = 1000; // 最大进化代数
- const double MUTATION采用RATE = 0.1; // 变异率
- const double CROSSOVER采用RATE = 0.8; // 交叉率
- // 随机生成一个初始解
- vector<int> generate采用solution(int L, const vector<int>& a) {
- vector<int> solution(a.size());
- for (int i = 0; i < a.size(); ++i) {
- solution[i] = rand() % (L / a[i] + 1);
- }
- return solution;
- }
- // 评估解的质量
- int evaluate(const vector<int>& solution, int L, const vector<int>& a) {
- int total采用length = 0;
- for (int i = 0; i < solution.size(); ++i) {
- total采用length += solution[i] * a[i];
- }
- return total采用length;
- }
- // 变异操作
- void mutate(vector<int>& solution, int L, const vector<int>& a) {
- for (int i = 0; i < solution.size(); ++i) {
- if (rand() < RAND采用MAX * MUTATION采用RATE) {
- solution[i] = rand() % (L / a[i] + 1);
- }
- }
- }
- // 交叉操作
- void crossover(vector<int>& parent1, vector<int>& parent2, int L, const vector<int>& a) {
- if (rand() < RAND采用MAX * CROSSOVER采用RATE) {
- int crossover采用point = rand() % a.size();
- for (int i = crossover采用point; i < a.size(); ++i) {
- swap(parent1[i], parent2[i]);
- }
- }
- }
- // 遗传算法主函数
- vector<int> genetic采用algorithm(int L, const vector<int>& a) {
- srand(time(NULL));
- vector<vector<int>> population(POP采用SIZE);
- for (int i = 0; i < POP采用SIZE; ++i) {
- population[i] = generate采用solution(L, a);
- }
- for (int generation = 0; generation < MAX采用GEN; ++generation) {
- vector<int> fitness(POP采用SIZE);
- for (int i = 0; i < POP采用SIZE; ++i) {
- fitness[i] = evaluate(population[i], L, a);
- }
- sort(fitness.begin(), fitness.end(), greater<int>());
- if (fitness[0] == L) {
- return population[0];
- }
- vector<vector<int>> new采用population(POP采用SIZE);
- for (int i = 0; i < POP采用SIZE; ++i) {
- int parent1采用index = rand() % POP采用SIZE;
- int parent2采用index = rand() % POP采用SIZE;
- while (parent1采用index == parent2采用index) {
- parent2采用index = rand() % POP采用SIZE;
- }
- new采用population[i] = population[parent1采用index];
- crossover(new采用population[i], population[parent2采用index], L, a);
- mutate(new采用population[i], L, a);
- }
- population = new采用population;
- }
- int best采用index = max采用element(fitness.begin(), fitness.end()) - fitness.begin();
- return population[best采用index];
- }
- int main() {
- int L = 100;
- vector<int> a = {10, 20, 30, 40, 50};
- vector<int> solution = genetic采用algorithm(L, a);
- for (int i = 0; i < solution.size(); ++i) {
- cout << "小木棒" << i + 1 << "的长度: " << solution[i] * a[i] << endl;
- }
- return 0;
- }
复制代码 |
|