|
- 以下是使用C++实现力密度法找形算法的示例代码:
- ```cpp
- #include <iostream>
- #include <vector>
- #include <cmath>
- using namespace std;
- // 定义节点结构体
- struct Node {
- double x, y; // 节点坐标
- double fx, fy; // 节点受力
- };
- // 计算两点之间的距离
- double distance(Node a, Node b) {
- return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
- }
- // 计算节点受力
- void calculateForces(vector<Node>& nodes, vector<vector<int>>& elements) {
- for (int i = 0; i < nodes.size(); i++) {
- nodes[i].fx = 0;
- nodes[i].fy = 0;
- }
- for (int i = 0; i < elements.size(); i++) {
- int n1 = elements[i][0];
- int n2 = elements[i][1];
- Node node1 = nodes[n1];
- Node node2 = nodes[n2];
- double L = distance(node1, node2);
- double P = 1000; // 假设施加在节点上的荷载为1000N/m
- double k = P / L; // 计算单元刚度
- double dx = node2.x - node1.x;
- double dy = node2.y - node1.y;
- double l = sqrt(dx * dx + dy * dy);
- double cosTheta = dx / l;
- double sinTheta = dy / l;
- double fx = k * (l - L) * cosTheta;
- double fy = k * (l - L) * sinTheta;
- nodes[n1].fx += fx;
- nodes[n1].fy += fy;
- nodes[n2].fx -= fx;
- nodes[n2].fy -= fy;
- }
- }
- // 求解线性方程组,获得自由节点坐标
- void solveLinearSystem(vector<Node>& nodes, vector<vector<int>>& elements) {
- vector<vector<double>> A(nodes.size(), vector<double>(nodes.size()));
- vector<double> B(nodes.size());
- for (int i = 0; i < nodes.size(); i++) {
- A[i][i] = 1;
- B[i] = nodes[i].fx;
- }
- for (int i = 0; i < elements.size(); i++) {
- int n1 = elements[i][0];
- int n2 = elements[i][1];
- Node node1 = nodes[n1];
- Node node2 = nodes[n2];
- double L = distance(node1, node2);
- double P = 1000; // 假设施加在节点上的荷载为1000N/m
- double k = P / L; // 计算单元刚度
- double dx = node2.x - node1.x;
- double dy = node2.y - node1.y;
- double l = sqrt(dx * dx + dy * dy);
- double cosTheta = dx / l;
- double sinTheta = dy / l;
- double fx = k * (l - L) * cosTheta;
- double fy = k * (l - L) * sinTheta;
- A[n1][n1] += cosTheta * cosTheta;
- A[n1][n2] += cosTheta * sinTheta;
- A[n2][n1] += sinTheta * cosTheta;
- A[n2][n2] += sinTheta * sinTheta;
- B[n1] += fx * cosTheta;
- B[n2] += fx * sinTheta;
- }
- // 高斯消元法求解线性方程组
- for (int i = 0; i < nodes.size(); i++) {
- for (int j = i + 1; j < nodes.size(); j++) {
- double ratio = A[j][i] / A[i][i];
- B[j] -= ratio * B[i];
- for (int k = i; k < nodes.size(); k++) {
- A[j][k] -= ratio * A[i][k];
- }
- }
- }
- for (int i = nodes.size() - 1; i >= 0; i--) {
- for (int j = i + 1; j < nodes.size(); j++) {
- B[i] -= A[i][j] * B[j];
- }
- B[i] /= A[i][i];
- }
- for (int i = 0; i < nodes.size(); i++) {
- nodes[i].x += B[i];
- }
- }
- int main() {
- // 定义节点和单元信息
- vector<Node> nodes = {{0, 0}, {5, 0}, {10, 0}, {15, 0}};
- vector<vector<int>> elements = {{0, 1}, {1, 2}, {2, 3}};
- // 计算节点受力
- calculateForces(nodes, elements);
- // 求解线性方程组,获得自由节点坐标
- solveLinearSystem(nodes, elements);
- // 输出结果
- for (int i = 0; i < nodes.size(); i++) {
- cout << "Node " << i << ": (" << nodes[i].x << ", " << nodes[i].y << ")" << endl;
- }
- return 0;
- }
- ```
复制代码 |
|