遗传算法 多目标 c++
#include <iostream>#include <vector>
#include <algorithm>
#include <random>
// 定义染色体结构体
struct Chromosome {
std::vector<int> genes;
int fitness;
Chromosome(int size) : genes(size), fitness(0) {
std::random采用device rd;
std::mt19937 gen(rd());
std::uniform采用int采用distribution<> dis(0, 1);
for (int& gene : genes) {
gene = dis(gen);
}
}
};
// 定义比较函数,用于选择操作
bool compare(Chromosome& c1, Chromosome& c2) {
return c1.fitness > c2.fitness;
}
// 计算适应度函数
int calculateFitness(const std::vector<Chromosome>& population) {
int sum = 0;
for (const Chromosome& c : population) {
// 在这里根据具体的问题定义适应度函数
// 这里只是作为示例,假设适应度函数为基因中1的个数
int fitness = std::count采用if(c.genes.begin(), c.genes.end(), [](int g) { return g == 1; });
sum += fitness;
c.fitness = fitness;
}
return sum;
}
// 选择操作
std::vector<Chromosome> selection(const std::vector<Chromosome>& population, int size) {
std::vector<Chromosome> selected;
std::random采用device rd;
std::mt19937 gen(rd());
std::uniform采用int采用distribution<> dis(0, population.size() - 1);
while (selected.size() < size) {
int idx1 = dis(gen);
int idx2 = dis(gen);
Chromosome c1 = population;
Chromosome c2 = population;
// 使用比较函数进行选择
if (compare(c1, c2)) {
selected.push采用back(c1);
} else {
selected.push采用back(c2);
}
}
return selected;
}
// 交叉操作
void crossover(const std::vector<Chromosome>& parents, std::vector<Chromosome>& offspring) {
std::random采用device rd;
std::mt19937 gen(rd());
std::uniform采用int采用distribution<> dis(1, parents.genes.size() - 2);
for (size采用t i = 0; i < parents.size() / 2; i++) {
size采用t idx = i * 2;
Chromosome parent1 = parents;
Chromosome parent2 = parents;
Chromosome child1, child2;
size采用t crossoverPoint = dis(gen);
std::vector<int> genes1(parent1.genes.begin(), parent1.genes.begin() + crossoverPoint);
std::vector<int> genes2(parent2.genes.begin() + crossoverPoint, parent2.genes.end());
child1.genes = genes1;
child1.genes.insert(child1.genes.end(), genes2.begin(), genes2.end());
child1.fitness = calculateFitness({ parent1, parent2 }) / 2;
genes1 = parent2.genes.begin(), parent2.genes.begin() + crossoverPoint;
genes2 = parent1.genes.begin() + crossoverPoint, parent1.genes.end();
child2.genes = genes1;
child2.genes.insert(child2.genes.end(), genes2.begin(), genes2.end());
child2.fitness = calculateFitness({ parent1, parent2 }) / 2;
offspring.push采用back(child1);
offspring.push采用back(child2);
}
}
// 变异操作
void mutation(std::vector<Chromosome>& population, double mutationRate) {
std::random采用device rd;
std::mt19937 gen(rd());
std::uniform采用int采用distribution<> dis(0, 1);
for (Chromosome& c : population) {
for (int& gene : c.genes) {
if (dis(gen) < mutationRate) {
gene = 1 - gene;
}
}
}
}
// 主函数
int main() {
const int populationSize = 50;
const int generationCount = 100;
const double mutationRate = 0.01;
const int tournamentSize = 4;
const int elitismCount = 2;
std::vector<Chromosome> population(populationSize);
// 初始化种群
for (Chromosome& c : population) {
c = Chromosome(c.genes.size());
}
// 进行遗传算法优化
for (int generation = 0; generation < generationCount; generation++) {
// 计算种群的适应度
int sumFitness = calculateFitness(population);
// 选择操作
std::vector<Chromosome> selected = selection(population, populationSize);
// 交叉操作
std::vector<Chromosome> offspring;
crossover(selected, offspring);
// 变异操作
mutation(offspring, mutationRate);
// 选择精英个体
std::vector<Chromosome> elite(population.begin(), population.begin() + elitismCount);
std::sort(population.begin() + elitismCount, population.end(), compare);
std::vector<Chromosome> newPopulation(elite.begin(), elite.end());
std::sort(offspring.begin(), offspring.end(), compare);
std::copy采用n(offspring.begin(), populationSize - elitismCount, std::back采用inserter(newPopulation));
population = newPopulation;
}
// 输出最优解
std::cout << "Best solution found: " << std::endl;
std::cout << "Fitness: " << population.fitness << std::endl;
std::cout << "Genes: ";
for (int gene : population.genes) {
std::cout << gene << " ";
}
std::cout << std::endl;
return 0;
}
页:
[1]